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wonder how the energy can go from the source b to the target f .
To understand easily this mechanism we can construct another
representation of the topology. It is equivalent to spread the
network which is a planar one (it has four faces plus the exterior:
its genus is 5). We can associate each vertices to a segment
of a circle, and each frontier which is a cord to a radius. A
little circle shows the location of the source and a little straight
line that indicates the receiver. The figure 7.12 shows this new
representation.

On this figure and under this representation, we easily un-
derstand that to go from A to D we have to cross the borders
−d and h. By the other way the transfer function is hc. All
the interactions of the network can be include in a single circle.
As the cords considered here are branches, the topology has five
faces. But finally, the number of faces is not so interesting to
understand how the system works. As there are four segments,
the dimension of the manifold is four. The drawn gives also
another information. If we want to isolate the source, we can
decrease the values of d and h. The system can be called cir-
cular and denoted S1/2 as the interactions can be completely
projected on a circle (two circles making a sphere).

Each quarter of the circle is a vertex. But for the moment,
this representation is valid only in low frequencies. At least
inductances must be added to each vertices. This can include
self inductance of borders. As a consequence, this will decrease
the quality of the isolation. If we increase again the frequencies,
radiated mutual inductance will appear which can add a new
direct path from vertex A to vertex C. This new cord can be
seen as a new frontier between A and D (imagine that two loops
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Figure 7.12: Representation in a single circle
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Figure 7.13: Mutual interaction between A and D

in interaction exists at these extremities). Is it possible to add
this cord inside the circle?

The figure 7.13 shows this added coupling. As it is a frontier,
we may want to add a radius to the previous circle. But it is not
possible without making a new vertex incorporated between the
others, and no vertices are created using the mutual inductance
coupling.

The only solution is to add the new radius on a new half
circle with a circulation going from A to D. The figure 7.14
represents this mechanism. The system in this case is S3/4.

The mutual inductance doesn’t change the expression of H
(equation 7.31) but the metric part L of the system which be-
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Figure 7.14: Adding a half circle for M

comes:

L =


L11 0 0 −Mp
0 L22 0 0
0 0 L33 0
−Mp 0 0 L44

 (7.32)

Seeing this new representation, it is easier to find solutions in or-
der to increase the isolation of a vertex. Clearly in our imagined
problem, decreasing the value of d and h is no more sufficient,
it is also necessary to suppress the M interaction. Now finding
the influence of each path is a question of computation, using
the distance definition given equation 7.26.
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A first conclusion on the systems analysis

To represent the interactions inside a system is a complicated
task. Starting from the real system, we describe it as a collec-
tion of subpart or sub-manifolds and by a process of direct sum
and adding of interactions, we construct the complete manifold
associated with the whole system. From this definition, we make
a projection of the lagrangian into a graph made of vertices and
edges as meshes and cords. In a second step we transform this
representation of the manifold in circles defining S systems or
manifolds. Then, solutions can be studied to decrease some paths
between emitters and receivers. The distance between them is
defined in volts, as demonstrated through the second geometriza-
tion process.

Increasing the frequencies and Sn systems analysis

We continue to discuss with our first case. If the frequencies
increase, the extremities of each line will be separate and no
longer linked by a non propagative model of wire. Each line
will be represented by a branin. The dimension of the manifold
increases and include eight meshes. Between the extremities of
the line we have a cord and between lines, another cord defined
by Vabre’s relations3. But we don’t care here of Vabre’s formula.
The figure 7.15 shows the transformation between the graph and
its projection on a circle as we do previously.

3Alain Reineix, Olivier Maurice. Progrès récents dans la modélisation
CEM de câblages électriques de systèmes complexes. CCT-CEM, Mar 2017,
Toulouse, France. hal-01495620
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Figure 7.15: High frequency projection on the circle

We have construct the circle starting from the major path
between the input and the output. This leads to the circle as it
is presented on the figure 7.15. But other paths exist, the paths
using the far-end cross talk between the lines. And if we trace
them, this gives the first drawn figure 7.16. We understand that
we cannot trace these interactions without crossing them if we
keep them either on the same circle, or even on a new half circle.
But using a new complete circle, it is possible to create paths
without any cutting the paths. A first circle is drawn taking into
account the interactions c2 and c4 and a second circle is drawn
taking into account the interactions c1 and c3. The figure 7.17
shows the first circle. The whole set of three circles describes
completely the system. Note that all half circles are completed
by some vertices in order to wear the total interactions from
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the source 1 to the target 8. Having three circles in final, the
system is S3/2. Two circles giving a sphere (S1) and with one
circle more, this leads to S3/2.

The higher the order of S, the higher the difficulty to isolate
the target from the source. For finding a solution in order to
avoid disturbances on the function 8 coming from emissions of
1, it’s necessary to reduce the problem if possible. First op-
eration is to apply the ”weak coupling approximation”. Under
the ”weak coupling approximation” (WCA) we accept the idea
that the reaction of the receiver of energy doesn’t impact the
behavior of the emitter. In other word we may say that the cou-
pling function has an impedance operator that is not changed
depending on the receiver. This is false when near field cou-
pling arrives in the process but globally true elsewhere. This is
a consequence of the diffusion process. Often the emitter com-
municates its energy to many paths, and the receivers make the
same. Of fact the part of energy that comes back to the emitter,
coming from one receiver is neglectable. In near field process,
both emitter and receiver become a unique object inside which
energy is exchanged. The diffusion in that case is out of pur-
pose and both emitter and receiver influence the whole system
realized starting from their common participation.

How is it possible to verify the WCA? For an emitter u and a
receiver J (natural written opposite to the covariant one) linked
through a coupling function y, if the coupling is a WCA one:

J(u) = J(u)± ε, ∀J ⇒ ∆J(u)

∆J
< ε = f

(
y2
)

(7.33)
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Figure 7.16: Adding cords from far end cross talk

ε being a residual change in the current of the emitter.

It is important to understand that this doesn’t mean that a
current on the receiver J(u) cannot change the current of the
emitter J . Because, at the inverse, it can exist a WCA from
u seen as an emitter to J seen as a receiver. But it means
that the back energy resent to the emitter and coming from
itself is neglectable. This can be true even for non symmetrical
couplings.

If we have J = yu. If z is the impedance operator of J ,
we have also v = J/z. Now we can write ∆J(u) = y′v, so by
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Figure 7.17: Two circles more for other paths

replacement this gives J(u) = y′J/z and finally:

∆J(u) =
1

z
y′yu

Our criterion becomes:

1

z
y′yu < ε (7.34)

Note that the difficulty comes from the fact that the crite-
rion depends on the impedance operator of the receiver. A way
to measure this effect is to measure the impedance seen from
the input of the emitter. If the current is influenced by a poten-
tial receiver, the impedance will change also, because it means
that the generator see another operator on the input. And if
the impedance operator is modified by the proximity of another
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one that belongs to the receiver, we understand easily that this
modification depends on the impedance operator of the receiver.

There is a domain where this problem is clearly identified:
the antennas. As long as the environment doesn’t influence
an antenna, its radiation impedance remains unchanged. If an
object becomes to be too much near, the radiation impedance
changes and the new antenna is constitued by including both
the original antenna and the object.

Under the WCA we can triangularized our matrix H. In low
frequencies H becomes:

H =



2h+ b+ d 0 0 0

−h 2h+ a+ c 0 0

−d 0 2h+ d+ g 0

0 −c −h 2h+ c+ f


(7.35)

and the same for L:

L =


L11 0 0 0
0 L22 0 0
0 0 L33 0
−Mp 0 0 L44

 (7.36)

With the assumption of WCA, each path becomes easy to
establish. Starting from a current on A (covariant approach) on
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vertex B we can write:

eB = −hJA

passing through a first border. Now JB = eB/(2h+ a+ c) and
eD = −cJB . So:

JD =
hc

(2h+ c+ f)(2h+ a+ c)
JA

This first transfer function ft associates with this first path is
defined by:

ft = 20log

(
JD

JA

)
(7.37)

It remains to compute the other paths... The transfer func-
tion results from the product of the border functions on the
numerator and the product of the impedance operator on the
denominator (with WCA and linear assumptions). Bode’s dia-
gram is easy to trace as solutions to reduce the impact of various
paths.

[First reduction process] A question may be: how to do
with strong interactions? There is only one possible response:
a set of branches leading to a network where strong
interactions exist must be considered as a single vertex.
The associate manifold is said to be unseparable. On the circle
projection, this can be include by making abstraction of the
detail inside a quarter. The attention must be focused on the
borders for which the WCA can be applied. This constitutes
the first reduction process.
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[Second reduction process] The second reduction process
consists in decreasing as far as possible the order of S. Our
previous system being S3/2, an ideal situation may be to reach
S1/4 (segregation principle)! To do that, it seems simplest
to begin by the paths of lower orders, i.e. where the number
of borders is the lower. There is a thin relation between the
number of borders and the neighborhood. This conducts to
define a neighborhood distance:

Definition :
The neighborhood distance d̂ is the number of borders to cross

going from an emitter to a receiver.
The strategy used to decreased the coupling can be to in-

crease the geometrical distance: i.e. playing on L, or playing
on the filters and impedances defined in the operators of H.
We find the projections on the diagram 7.5 with displacements
along the prevention axis or the protection axis.

Let’s take an example. We consider a circuit including two
meshes separated by a capacitive filter. A part of this circuit is
coupled with a pigtail of a receiver equipped with a shielded ca-
ble. Another path is between the same part emitting of the first
circuit and the external domain of the receiver. Then through
the transfer impedance of the shield, it creates an EM force in
the internal domain. The vertex graph of the problem is pre-
sented figure 7.18 where we show voluntarily the detail of the
two meshes for the first circuit.

The representation of this graph into circles is given figure
7.19. The first reduction was applied, reducing the two meshes
of the first circuit into a single part of the circle. Two paths
are available to go from b to the internal domain Di. The order
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Figure 7.18: A S1/2 system

of the system is S1/2. The first neighborhood of the target is
the coupling through the pigtail α. By suppressing the coupling
through the pigtail, we suppress one path and remains only the
coupling through the transfer impedance of the cable. The sys-
tem becomes S1/4, last dimension before S0. The neighborhood
distance is d̂ = 2. The transfer function is given by:

JDi = − 1

Cp

βZT
bDEDi

Ja

that shows clearly that decreasing ZT will increase the protec-
tion of JDi .
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Figure 7.19: Circle representation

In this result, increasing ZT increase the protection of the
receiver. The other parameter is the coupling cœfficient β which
has the dimension of a mutual inductance. If the geometrical
distance between the emitter and the shielded cable increases,
this will decrease the EM force induced on the external domain,
and, as a consequence, decrease the level induced on the target.
For an identical level of protection, we can maintain the product
βZT constant, or near a given value. β is part of the metric L
while the transfer impedance function is part of the structure
H. We can construct a PP diagram (see figure 7.5) to trace the
limit curve of safety. Depending on the number of layers for
the shield and depending on the distance we obtain three states
that give the limit of the PP curve. Figure 7.20 illustrates the
process.
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Now if for some reason of system layout we need to reduce
the distance between the emitter and the receiver, this operation
can locate the point of working under the limit, like shown figure
7.21. In that case there are two solutions:

• looking for the nearest point on the limit, which will imply
a compromise on both distance and protection;

• to keep the distance desired and looking for the protection
involved by this change: here a three layers shielded cable.

Figure 7.20: Limit curve in the PP diagram
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Figure 7.21: Finding solution after a new layout
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For analyzing the evolution of the risk of failure in a system
consists in following the trajectory of its working point in the PP
diagram. Each changing in this film accompanies the movement
of the system depending on the phases of its mission and the
evolution of its environment. The threshold Us is the input data
from the data sheet giving the level of sensibility for the device.
It can be computed for out-band behavior using research works
and other sources of information. This value has a given uncer-
tainty and lack of knowledge. For this reason a margin must be
taken to decrease this value and to guarantee that the electronic
won’t be disturbed. Now, around this new threshold, the whole
uncertainty including those of the structure, components, loca-
tions, etc., should not reach the previous initial value obtained
from the data sheet. Figure 7.22 illustrates this mechanism.

To remain under the level fixed, gain in the protection can-
not go linearly from one value to another. We see that adding
a braid on a cable will give one step 20 dB at least of isola-
tion. That’s often the case whatever the constraints and this
shows the mechanism in a system conception and the limit in
an optimization process.

[What can be done when emitter and receiver are in
strong coupling interaction?] Same process must be fol-
lowed but the engineer should remember that under strong cou-
pling assumption, both emitter and receiver will be impacted
by any change in the coupling function.
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Figure 7.22: Uncertainty around the threshold

7.5.3 Margin management

Once the border determined, the cycle from the emission limits
defined to the immunity limits requirements can be made. For a
threshold Vs of a component, the choice of architecture leads to a
maximum of emissions for all sources ME . On this level we take
a margin to define the immunity limit IL = ME+margin. This
constraint generates a level across the component Vg. Logically,
Vg = Vs + margin. If no disturbances is observed during the
test, it confirms that the margin is reached. The figure 7.23
explains the process.
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Figure 7.23: Margin process
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7.5.4 System life

During its life or its mission, a system changes in its character-
istics and can encountered more or less external emitters.

When the system evolves, the story can be drawn on a mu-
sical partition. At each step, the metric and the hamiltonian of
the system can change like the external sources radiating into
the direction of the system. But the relative location of the
system and of the sources can change also.

The source vector (using a nodes pair vector) evolves depend-
ing on the system movement or evolution. The components of
the vector source change depending on time, and the way they
are seen by the system is also changing with time. This changes
can be taken into account using a matrix that I have called a
gamma matrix.

Figure 7.24 shows how the system life can be seen compared
to a music sheet.

Once the system chains are conceived, the system can ap-
pear like a robot, able to make various actions in response to
commands. Depending on its ”autonomy”, this capacity goes
more or less far. For example we can imagine all the versions
we have between two robots, a first one being a classical car.
I use it to go from Paris to Rouen. It helps me to make this
travel with different secure functions, but I have to drive this
car anyway! And a second robot which ask me the destination,
and make alone all the rest to transport me to this destination.

Under this kind of system, what evolves principally during
the mission is the environment. In parallel to the previous mu-
sic sheet, we can add another one to see how the environment
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Figure 7.24: System life, mission and phases

evolves during the same mission. Each line takes in charge one
source that belongs to the environment. So the problem con-
sists in having a mathematical technique that changes the source
covector following its real changing in the mission. Note that
the synchronizations (Cn) between the existence of a source in
the environment and the electronic state of the system obliges to
study the problem through a stochastic process. Each electronic
state as phase of mission can be identified with color in corre-
spondance with their critical role in the mission. The same for
the constraints that can be more or less dangerous. More, the
time duration of each event can be drawn on the music sheet.
But a difficulty is that for example, between the time duration
of a breaking phase for a vehicle and the duration of lightning
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field, the difference of scales is enormous. Figure 7.25 illustrates
this approach.

Figure 7.25: System life and environment

The system must be cut in subparts to be studied. It is im-
possible for the human mind to encompass the whole system.
Doctors need to understand each subparts of a human body to
make a diagnostic answering to a list of symptoms. The system
is made of chains. One chain to distribute the energy. One chain
to distribute the intelligence (numeric chain and microproces-
sors). One chain to manage the perception. One chain to man-
age the actions (motors, etc.). And so on... Each chain is made
of signals exchanged between electronic equipments involved in
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this chain. Each equipment is made of electronic components.
All of this mechanisms are supported in a mechanical structure
or in various mechanical structures. Strategies of exoskeleton or
endoskeleton can be used. It’s the same for the conception of
the system. Two approaches can be followed: bottom-up and
up-down. Sometimes, both approaches are used. There are no
rules. In final, chains must be defined and incorporated in a
chosen structure. What we may say is that the more the sys-
tem incorporates electronic, the more the bottom-up approach
should be used. This because the electronic can adapt the struc-
ture to answer to various sollicitations, even mechanical ones.
In that case, the mechanical structure can be defined only once
the electronic functions are defined themselves.

In any cases, the objectives of the system is to make some
missions, to answer for requirements of the customer.

Each chain q is associated with an impedance operator
q

ζ.
Each of this operator is created using a direct sum of the op-

erators of the equipments
e

ζ. Each operator of equipment is
constructed from the direct sum of the components operators:
e

ζ = ⊕c
c

ζ. But rather than speaking of operators, we should
speak of manifolds. And finally, the system S appears as a
direct sum of manifolds:

S = ⊕q
[
⊕e
(
⊕c

c

ζ

)]
(7.38)

and ⊕c
c

ζ =
e

ζ, and
q

ζ = ⊕e
e

ζ. But we known that these direct
sums must be completed by coupling operators, including the
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metric L.
This has a deep physical meaning. Constructing a system

supposes that you group the system in the same space, under
the same metric. If not, it becomes impossible to join its pieces
or to establish a dialog between its microprocessors. To con-
nect both metrics of the separated systems, the influence of
each metric must be transferred to the other. That’s the pur-
pose of the mutual inductance. Once more we may discuss of
the weak coupling assumption meaning that a system part is
weakly coupled to the other part of the system. This means
that the coupling acts only one way without back effect on the
emitter. But at the system level, this doesn’t mean that the
added part has no influence on the system. The assumption of
weak coupling can concern one physic, and not the whole system
mechanisms. For example, adding a microprocessor can change
the energy consumption at the margin but decide of the whole
system behavior.

7.5.5 Sources and gamma matrices

The sources of the environment can appear many times in differ-
ent locations, or be seen by various parts of the system because
of its movements, or again appear only one time in a particu-
lar moment. Knowing Markov’s processes, a similar matrix can
help to represent this kind of changing in the environment. We
just need to replace the source covector e by a modified source
covector γe depending of some rhythm that helps to follow the
system life.

When we need to study a system, a permanent problem ap-
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pears: is it possible to model the system in the frequency domain
or is it possible to model it only in the time domain? Why this
question? Because they are physical phenomenons that can be
easily modeled in the frequency domain, while others can be
easily modeled in the time domain.

Skin effect, modes in a cavity, radiations are some of the
physical phenomenons that are easier to model in the frequency
domain. At the opposite, non linear behaviors like diodes are
easier to model in the time domain. In fact, we can consider
two facts very importants in this problem:

1. non linear behaviors often depends on low frequency sig-
nals and polarisation signals;

2. the first difference between a periodic temporal form and a
single temporal form is that in the first case, the spectrum
is made of raies (the amplitude is also modified).

A graph in low frequencies decides of the state of the non
linear components. The high frequency components are mod-
ified depending on these states. The low frequency spectrum
is determined making the signal periodical even if this is not
the case in the real world. During the computation, a temporal
loop makes the non linearities changing and inside this temporal
loop, a frequency loop takes in charge the computation of the
high frequency signals. This idea uses two important results:

1. when a signal is called ”little signal” it has laws defined
on only one domain;
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2. the signals that makes the polarization of the nonlinear
components evolves slowly in a way that allows to neglect
the majority of the capacitors and inductances of low val-
ues. This simplifies the circuit and the expression of its
impedance operator. This is always interesting in the tem-
poral domain.

In a first step we make the signal periodic: e(t+ T ) = e(t).
This allows to find accurately the low frequency spectrum. Each
part of e(t) can be retrieved making a moving average compu-
tation on the signal. If fh is the typical central frequency of
the high frequency part of the signal and fb its low frequency
envelop, if fb << fh, the average of the signal on a multiple of
the duration 1/fh tends to suppress the high frequency signal
without impacting the low frequency one.

Once the computation is made, the amplitude found on each
high frequency component decides of its amplitude in the tem-
poral sum. To obtain the time domain signal, it’s just necessary
to add these various sinusoidal components to the low frequency
envelop. This kind of strategy is not so easy to write. After hav-
ing verified that the high frequency signal cannot develop the
level responsible for the changes in the domains, we determine
two circuits:

1. the low frequency circuit solved in the time domain with
the influence of the non linear components. Its source is
q(t);

2. the high frequency circuit solved in the harmonic domain
of sources Lh(f).
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at each time step, we solve the low frequency circuit using time
domain finite difference or Newton’s method. For each of these
steps, we solve the whole frequency domain for the high fre-
quency circuit. The amplitude of the harmonics are memorized
then added to the complete solution:

s(t) = ζ[q(t) +
∑
f

Lh(f)Cos(2πft)]

One advantage of this decomposition is to take into account
changes in the high frequency part, mostly if the high frequency
signal comes from a different source from the low frequency one.

We write the signal u(t) with the sum q(t) + h(t) where q(t)
is the slowly varying signal with the spectrum Lq(f) and h(t)
the high frequency signal with the spectrum Lh(f).

A symbol with a hat points out the spectrum of the signal
identified by the symbol (e(t)→ ê(f)).

If we are in small signal conditions, the change in this volt-
age or in the corresponding current should not influence the
impedance operator. The small signal condition can be written:

∀êν , îα ∈ Lh(f),
∂ζνσ
∂iα

= 0 (7.39)

This can be said with the condition: Γνσ,α = 0. Once more the
curvature plays a very important role. We see that as often,
working in a flat space simplifies enormously the analysis.

We imagine a signal defined by:

u(t) = αCos

(
2π

t

TB

)
+ACos

(
2π

t

T0

)
= v(t) + b(t)
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We wonder how we may treat both signals high and low frequen-
cies which means to be able to identify them in a first step? We
make the assumption that the non linear behavior has a cutoff
frequency fc and period Tc. We have TB >> Tc and T0 << Tc.
We want to compute a floating average defined by:

〈u〉 (t) =
1

T0

∫ t+T0

t

dtu(t) (7.40)

This leads to:

〈u〉 (t) =
α

T0

∫ t+T0

t

dtCos

(
2π

t

TB

)
+
A

T0

∫ t+T0

t

dtCos

(
2π

t

T0

)
We obtain:

αTB
2πTO

[
Sin

(
2π t+T0

TB

)
− Sin

(
2π t

TB

)]
+ . . .

. . .+ AT0

2πT0

[
Sin

(
2π t+T0

T0

)
− Sin

(
2π t

T0

)]
We look at the second term:

. . . = A
2π

[{
Sin

(
2π t

T0

)
Cos2π + Cos

(
2π t

T0

)
Sin2π

}
− Sin

(
2π t

T0

)]
. . . = 0

The first term gives:

. . . = αTB
2πT0

[{
Sin

(
2π t

TB

)
Cos

(
2π T0

TB

)
+ Cos

(
2π t

TB

)
Sin

(
2π T0

TB

)}
. . .− Sin

(
2π t

TB

)]
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But:
T0

TB
= ε→ 0

so:

. . . =
αTB
2πT0

[
Cos

(
2π

t

T0

)
Sin

(
2π

T0

TB

)]
and:

Sin

(
2π

T0

TB

)
→ 2π

T0

TB

Finally:

〈u〉 (t) = αCos

(
2π

t

TB

)
= v(t)

the high frequency and small signal b(t) has disappeared. The
envelop of the composite signal can be extracted for a known
cutoff frequency of non linear behavior.

The previous demonstration can be extended to any kind of
envelop, not only the sinusoidal ones. This can be shown just
defining:

v(t) =
∑
q

αqCos

(
2π

t

Tq

)
with Tq >> T0, ∀q.

In order to facilitate the distinction between both kind of
signal, it is sometimes interesting to use also both time and
Laplace’s operator in a same equation. The envelope is treated
using the time and the small signal component using Laplace’s
operator. This appears naturally in the program where inside
the frequency loop there are equations depending on time and
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also depending on the pulsation. The time part of the equation
changes the polarization and the impedance operator, while the
small signal part evolves depending on the impedance sets by
the envelope. The impedance changes because parameters like
voltages or currents set domains that determine the expression
of the impedance operator. This can be somewhere written:
êa = ζab [v(t)] îb.

We imagine a fixed polarisation source pk(t) and a system
passing in front of this source. If the system has N inputs, the
source can illuminate various inputs of the system during time.
If the covector e at the origine is given by (for three inputs in
the system):

e =

 p1(t)
0
0

 (7.41)

If, after sometime, the movement of the system exposes the
second input to the source, the matrix γ defined by:

γ =

 0 0 0
1 0 0
0 0 0

 (7.42)

translates this process.

What is particularly interesting in this technique is that the
matrix γ can have for components the probabilities that such a
source illuminates a given input of the system. More often, these
probabilities are bayesian probabilities. We write the probabil-
ity that the source takes a value, knowing that the configuration
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of the system is also a first one, etc.:

γ(k)1 = P
(
e(k) = e1

∣∣ xk, ζ, . . .)
The commands ek drive the behavior of the system and the
external commands depends on stochastic processes. A con-
nectivity make links between a set of sources determined by a
γ matrix that selects the concerned sources and the covector
source applied to the system. We start from a known set of
sources {ea}. We identify in this set the sources concern by the
system life in a given moment: γab {ea}. Then a connectivity
creates the adequate source covector for the studied manifold:

uk = Cbkγ
a
b {ea}

The use of gamma matrices can be very fun for modeling
of propagating waves. Let’s take an example. We imagine a
system with two vertices. The source vector is defined by:

Uα =

[
e1

0

]
(7.43)

The propagation of the waves between these two vertices is de-
fined by the gamma matrix:

γαα =

[
0 −G
−G 0

]
(7.44)

G is a Green’s function. If we compute Uα = γααUα, this gives:

Uα =

[
0
−Ge1

]
(7.45)
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Uα = γααγ
α
αUα gives:

Uα =

[
G2e1

0

]
(7.46)

Uα = γααγ
α
αγ

α
αUα:

Uα =

[
0

−G3e1

]
(7.47)

Uα = γααγ
α
αγ

α
αγ

α
αUα:

Uα =

[
G4e1

0

]
(7.48)

etc. This gamma matrix models the ping pong of a wave ex-
changed between the two vertices. If G = 1, it is an oscillator.

Let’s take another example. We consider a system of three
vertices linked by two channel of communication. The part of
energy transmitted on vertex 2 is given by the cœfficient y21 =
1 + σ12, where σ12 is the reflexion cœfficient at the border on
vertex 2. Another part of the energy is reflected to vertex 1,
etc. These cœfficients are weighted by the delays of propagation
between each vertex. Finally the gamma matrix is defined by:

γαα =

 0 σ12e
−τ1p 0

y21e
−τ1p 0 σ23e

−τ2p

0 y32e
−τ2p 0

 (7.49)

τx are the delays of each channel.
Starting from the source vector:

Uα =

 1
0
0

 (7.50)
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we obtain:

γααUα =

 0
y21e

−τ1p

0

 (7.51)

γααγ
α
αUα =

 σ12y21e
−2τ1p

0
y32y21e

−(τ2+τ1)p

 (7.52)

etc.

The evolution of the source vector shows how the waves prop-
agates in the system for a source in vertex 1.

7.5.6 Time and frequencies

It is clear that the harmonic domain allows to compute easier
complicated phenomenon like the skin effect. Its big disadvan-
tage concerns the non linear behaviors. If we consider a trape-
zoidal form of rise and fall time ts and duration tD, its Laplace’s
transform is:

s(p) =

(
1− e−tsp

tsp2
− 1− e−tspe−tDp

tsp2

)
(7.53)

We can sometimes approximate a function u(t) as a sum of these
kind of signal:

u(t) =
∑
α

Aαs(p)e
−ταp =

∑
α

vα(t) (7.54)


